Discontinuous Radial Basis Function Approximations for Meshfree Methods
نویسنده
چکیده
Meshfree methods with discontinuous radial basis functions and their numerical implementation for elastic problems are presented. We study the following radial basis functions: the multiquadratic (MQ), the Gaussian basis functions and the thin-plate basis functions. These radial basis functions are combined with step function enrichments directly or with enriched Shepard functions. The formulation is coupled with level set methods and requires no explicit representation of the discontinuity. Numerical results show the robustness of the method, both in accuracy and convergence.
منابع مشابه
Elasto-plastic analysis of discontinuous medium using linearly conforming radial point interpolation method
In this paper, the linearly conforming enriched radial basis point interpolation method is implemented for the elasto-plastic analysis of discontinuous medium. The linear conformability of the method is satisfied by the application of stabilized nodal integration and the enrichment of radial basis functions is achieved by the addition of linear polynomial terms. To implement the method for the ...
متن کاملStabilized Galerkin and Collocation Meshfree Methods
Meshfree methods have been formulated based on Galerkin type weak formulation and collocation type strong formulation. The approximation functions commonly used in the Galerkin based meshfree methods are the moving least-squares (MLS) and reproducing kernel (RK) approximations, while the radial basis functions (RBFs) are usually employed in the strong form collocation method. Galerkin type form...
متن کاملTHE COMPARISON OF EFFICIENT RADIAL BASIS FUNCTIONS COLLOCATION METHODS FOR NUMERICAL SOLUTION OF THE PARABOLIC PDE’S
In this paper, we apply the compare the collocation methods of meshfree RBF over differential equation containing partial derivation of one dimension time dependent with a compound boundary nonlocal condition.
متن کاملStable Gaussian radial basis function method for solving Helmholtz equations
Radial basis functions (RBFs) are a powerful tool for approximating the solution of high-dimensional problems. They are often referred to as a meshfree method and can be spectrally accurate. In this paper, we analyze a new stable method for evaluating Gaussian radial basis function interpolants based on the eigenfunction expansion. We develop our approach in two-dimensional spaces for so...
متن کاملA parallel time stepping approach using meshfree approximations for pricing options with non-smooth payoffs
In this paper we consider a meshfree radial basis function approach for the valuation of pricing options with non-smooth payoffs. By taking advantage of parallel architecture, a strongly stable and highly accurate time stepping method is developed with computational complexity comparable to the implicit Euler method implemented concurrently on each processor. This, in collusion with the radial ...
متن کامل